Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Saudi Pharm J ; 32(5): 102025, 2024 May.
Article in English | MEDLINE | ID: mdl-38550332

ABSTRACT

Based on previous developments of our research programs in trying to find new compounds with multiple biological targets such as antioxidant, anti-diabetic, anti-Alzheimer's, and anti-arthritic agents. In the context, a novel series of sulfonamide derivatives based on the pyrazole or pyridine moieties 3a, b, 7-9, 11-13, 15a, b, and 16 were synthesized from amine compounds with sulfonyl chloride derivatives. The structures of sulfonamide derivatives were elucidated via spectroscopy (1H and 13C NMR). The sulfonamide derivatives were biologically assessed in vitro for their anti-diabetic (α-amylase and α-glucosidase inhibition) and anti-Alzheimer's (acetylcholinesterase inhibition) activities. The biological results revealed that compound 15a is a powerful enzyme inhibitor for α-amylase and α-glucosidase. Also, compound 15b demonstrated inhibitor activity against the acetylcholinesterase enzyme. The structure-activity relationship study of sulfonamide derivatives was accomplished. Furthermore, complementary in silico molecular properties, drug-likeness, ADMET prediction, and surface properties of the two more powerful derivatives 15a and 15b were fulfilled and computed. These studies recommend 15a and 15b as candidates with modifications in their structures before the in vivo assays.

2.
Bioorg Med Chem Lett ; 103: 129702, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38490620

ABSTRACT

C3-symmetry is a type of star-shaped molecule consisting of a central core and three symmetrically attached chains. These molecules are used in drug discovery due to their unique three-fold rotational symmetry, which allows for specific binding interactions and improved molecular recognition. In this text, we provide an overview of synthetic approaches with C3-symmetry as a pharmaceutical tool: progress, challenges, and opportunities. C3-symmetric ligands offer both challenges and opportunities in drug design. Their unique symmetry can enhance binding interactions, but careful consideration of rigidity, synthetic complexity, and target compatibility is crucial. Further research and advancements in synthetic methods and modeling tools will likely drive their exploration in drug discovery, leading to the discovery of potent C3-symmetric ligands.


Subject(s)
Drug Design , Drug Discovery , Ligands
3.
Article in English | MEDLINE | ID: mdl-38423706

ABSTRACT

Avanafil is an oral medication used to treat erectile dysfunction (ED). As a phosphodiesterase type 5 (PDE5) inhibitor, it functions by inhibiting the PDE5 enzyme, which ultimately results in increased levels of cyclic guanosine monophosphate (cGMP) and improved blood flow to the penis. Approved by the FDA in 2012, avanafil is recognised for its rapid onset of action, short half-life, and favourable side-effects profile. While it has been explored for other potential therapeutic applications, its current approved use is limited to ED and should be used as prescribed by a medical professional. This chapter provides a comprehensive review of avanafil, encompassing its nomenclature, physicochemical properties, methods of preparation, and identification. Various techniques for analysing avanafil, such as electrochemical analysis, spectrophotometric, spectrofluorimetric, and chromatographic techniques, are discussed. The pharmacology of avanafil, including its pharmacokinetics and pharmacodynamics, is also examined.


Subject(s)
Erectile Dysfunction , Male , Humans , Erectile Dysfunction/drug therapy , Phosphodiesterase 5 Inhibitors/pharmacology , Phosphodiesterase 5 Inhibitors/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Hemodynamics
4.
Article in English | MEDLINE | ID: mdl-38423709

ABSTRACT

Regorafenib is a small molecule tyrosine kinase inhibitor administered orally drug, act by inhibiting the activity of the VEGF receptors. It is used for the treatment of patients with metastatic colorectal cancer (CRC), advanced gastrointestinal stromal tumors, and hepatocellular carcinoma. This comprehensive profile on regorafenib includes an original data as well as data collected from the literature on Profiles of Methods of Drug Synthesis, different Physical Drug Profiles, Drug Analytical methods and Pharmacological profile (ADME). This chapter is divided into five main sections: General Description of the drug, Physical Characteristics, Methods of Preparation, Methods of Analysis, Pharmacology and List of References. These main sections are further divided to many sub-titles to cover most aspect of the drug in the light of the available literature. Among these sub-titles are the formulae, Elemental Analysis, physical characteristics which include constant of ionization, solubility, X-ray powder diffraction pattern, TGA, thermal conduct and spectroscopic and stability. Additionally, analytical techniques including Electrochemical, Spectrophotometric and chromatographic methods, ADME profiles and pharmacological effects were also discussed. Furthermore, methods and schemes are outlined for the preparation of the drug substance.


Subject(s)
Phenylurea Compounds , Pyridines , Humans , Drug Stability , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use
5.
Article in English | MEDLINE | ID: mdl-38423710

ABSTRACT

Ponatinib is a prescription medication used to treat a rare form of blood cancer called Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) and chronic myeloid leukemia (CML) that is resistant to other treatments. It belongs to a class of drugs called tyrosine kinase inhibitors, which work by blocking abnormal proteins that promote the growth of cancer cells. In this chapter, the synthesis methods and physicochemical properties of ponatinib were reviewed, besides the characterization of the ponatinib structure using different techniques such as elemental analysis, IR, UV, (1H and 13C) NMR, MS, and XRD. Furthermore, the compendial method for analysis of ponatinib was not found, while the literature review of a non-compendial method for analysis of ponatinib, such as spectroscopic, chromatographic, and immunoassay methods, was covered. Moreover, pharmacology and biochemistry were surveyed in the pharmacokinetic and pharmacodynamic studies.


Subject(s)
Antineoplastic Agents , Imidazoles , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Pyridazines , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Drug Resistance, Neoplasm , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
6.
Chem Biodivers ; 21(1): e202301375, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38031244

ABSTRACT

Trillium govanianum is a high-value medicinal herb, having multifunctional traditional and culinary uses. The present investigation was carried out to evaluate the phytochemical, biological and toxicological parameters of the T. govanianum Wall. ex D. Don (Family: Trilliaceae) roots collected from Azad Kashmir, Pakistan. Phytochemical profiling was achieved by determining total bioactive contents (total phenolic and flavonoid contents) and UHPLC-MS analysis. For biological evaluation, antioxidant activities (DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum, and metal chelation assays) and enzyme inhibition activities (against AChE, BChE, glucosidase, amylase, and tyrosinase) were performed. Moreover, cytotoxicity was assessed against three human carcinoma cell lines (MDA-MB-231, CaSki, and DU-145). The tested extract was found to contain higher total phenolics (7.56 mg GAE/g dry extract) as compared to flavonoid contents (0.45 mg RE/g dry extract). Likewise, for the antioxidant activity, higher CUPRAC activity was noted with 39.84 mg TE/g dry extract values. In the case of enzyme assays, higher activity was pointed out against the cholinesterase, glucosidase and tyrosinase enzymes. The plant extract displayed significant cytotoxicity against the cell lines examined. Moreover, the in-silico studies highlighted the interaction between the important phytochemicals and tested enzymes. To conclude, the assessed biological activity and the existence of bioactive phytochemicals in the studied plant extract may pave the way for the development of novel pharmaceuticals.


Subject(s)
Trillium , Humans , Trillium/chemistry , Monophenol Monooxygenase , Antioxidants/pharmacology , Antioxidants/chemistry , Flavonoids/pharmacology , Flavonoids/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry , Glucosidases , Phytochemicals/chemistry
7.
Gels ; 9(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38131920

ABSTRACT

BACKGROUND: The aim of this study was to evaluate the moisturizing efficacy of quince fruit, used in folk medicine. For this purpose, the phytoconstituents of Cydonia oblonga fruit extract, like phenolics and flavonoids, were determined. A stable cosmetic emulgel containing 4% Cydonia oblonga fresh fruit extract was formulated and subjected to in vivo evaluation compared with a control. MATERIALS AND METHODS: Cydonia oblonga fresh fruit extract was evaluated for tyrosinase activity and phenolic and flavonoid content. A stable emulgel containing 4% Cydonia oblonga fresh fruit extract was formulated and tested in a skin irritation test. After this, in vivo tests of erythema, moisture, sebum, and skin elasticity were conducted. The in vivo evaluation was a randomized and single-blind study. Thirteen healthy female volunteers were selected for a three-month study period. RESULTS: Cydonia oblonga fruit extract showed good phenolic and flavonoid content, which was associated with its good antioxidant and tyrosinase-inhibiting activity. Cydonia oblonga containing the emulgel showed a reduction in sebum and erythema, while the elasticity and moisture content showed increments in their levels after the three-month application of the formulation. The fruit contains chlorogenic acid and many sugars, which might account for its anti-inflammatory and sebum reduction effects; it is also capable of enhancing the skin's hydration level and decreasing skin sagging by enhancing its elasticity. CONCLUSION: The emulgel loaded with Cydonia oblonga fresh fruit extract is verified regarding its folklore status as a moisturizing agent that enhances the facial skin cells' resilience potential.

8.
Saudi Pharm J ; 31(12): 101866, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38033749

ABSTRACT

In this study, The inhibitory actions of human carbonic anhydrase (CA, EC 4.2.1.1) (hCA) isoforms I, II, IX, and XII are being examined using recently synthesized substituted hydroxyl Schiff derivatives based on the quinazoline scaffold 4-22. Quinazolines 2, 3, 4, 5, 7, 10, 15, and 18 reduce the activity of hCA I isoform effectively to a Ki of 87.6-692.3 nM, which is nearly equivalent to or more potent than that of the standard drug AAZ (Ki, 250.0 nM). Similarly, quinazolines 2, 3, and 5 and quinazoline 14 effectively decrease the inhibitory activity of the hCA II isoform to a KI of 16.9-29.7 nM, comparable to that of AAZ (Ki, 12.0 nM). The hCA IX isoform activity is substantially diminished by quinazolines 2-12 and 14-21 (Ki, 8.9-88.3 nM against AAZ (Ki, 25.0 nM). Further, the activity of the hCA XII isoform is markedly inhibited by the quinazolines 3, 5, 7, 14, and 16 (Ki, 5.4-19.5 nM). Significant selectivity levels are demonstrated for inhibiting tumour-associated isoforms hCA IX over hCAI, for sulfonamide derivatives 6-15 (SI; 10.68-186.29), and 17-22 (SI; 12.52-57.65) compared to AAZ (SI; 10.0). Sulfonamide derivatives 4-22 (SI; 0.50-20.77) demonstrated a unique selectivity in the concurrent inhibition of hCA IX over hCA II compared to AAZ (SI; 0.48). Simultaneously, benzenesulfonamide derivative 14 revealed excellent selectivity for inhibiting hCA XII over hCA I (SI; 60.35), whereas compounds 5-8, 12-14, 16, and 18-22 demonstrated remarkable selectivity for hCA XII inhibitory activity over hCA II (SI; 2.09-7.27) compared to AAZ (SI; 43.86 and 2.10, respectively). Molecular docking studies additionally support 8 to hCA IX and XII binding, thus indicating its potential as a lead compound for inhibitor development.

9.
Polymers (Basel) ; 15(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37960016

ABSTRACT

This study aimed at formulating the antiglaucoma agent, Bimatoprost (BMT), into niosomal in situ gel (BMT-ISG) for ocular delivery. Niosomes containing cholesterol/span 60 entrapping BMT were fabricated using a thin-film hydration method. The fabricated niosomes were optimized and characterized for entrapment efficiency (%EE) and size. The optimized BMT-loaded niosomal formulation prepared at a cholesterol/span 60 ratio of 1:2 exhibited the highest entrapment (81.2 ± 1.2%) and a small particle size (167.3 ± 9.1 nm), and they were selected for incorporation into in situ gelling systems (BMT-ISGs) based on Pluronic F127/Pluronic F68. Finally, the in vivo efficiency of the BMT-ISG formulation, in terms of lowering the intraocular pressure (IOP) in normotensive male albino rabbits following ocular administration, was assessed and compared to that of BMT ophthalmic solution. All the formulated BMT-ISGs showed sol-gel transition temperatures ranging from 28.1 °C to 40.5 ± 1.6 °C. In addition, the BMT-ISG formulation sustained in vitro BMT release for up to 24 h. Interestingly, in vivo experiments depicted that topical ocular administration of optimized BMT-ISG formulation elicited a significant decline in IOP, with maximum mean decreases in IOP of 9.7 ± 0.6 mm Hg, compared to BMT aqueous solution (5.8 ± 0.6 mm Hg). Most importantly, no signs of irritation to the rabbit's eye were observed following topical ocular administration of the optimized BMT-ISG formulation. Collectively, our results suggested that niosomal in situ gels might be a feasible delivery vehicle for topical ocular administration of anti-glaucoma agents, particularly those with poor ocular bioavailability.

10.
Molecules ; 28(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37894604

ABSTRACT

In continuation of our research programs for the discovery, production, and development of the pharmacological activities of molecules for various disease treatments, Schiff bases and pyrazole scaffold have a broad spectrum of activities in biological applications. In this context, this manuscript aims to evaluate and study Schiff base-pyrazole molecules as a new class of antioxidant (total antioxidant capacity, iron-reducing power, scavenging activity against DPPH, and ABTS radicals), anti-diabetic (α-amylase% inhibition), anti-Alzheimer's (acetylcholinesterase% inhibition), and anti-arthritic (protein denaturation% and proteinase enzyme% inhibitions) therapeutics. Therefore, the Schiff bases bearing pyrazole scaffold (22a, b and 23a, b) were designed and synthesized for evaluation of their antioxidant, anti-diabetic, anti-Alzheimer's, and anti-arthritic properties. The results for compound 22b demonstrated significant antioxidant, anti-diabetic (α-amylase% inhibition), and anti-Alzheimer's (ACE%) activities, while compound 23a demonstrated significant anti-arthritic activity. Prediction of in silico bioinformatics analysis (physicochemical properties, bioavailability radar, drug-likeness, and medicinal chemistry) of the target derivatives (22a, b and 23a, b) was performed. The molecular lipophilicity potential (MLP) of the derivatives 22a, b and 23a, b was measured to determine which parts of the surface are hydrophobic and which are hydrophilic. In addition, the molecular polar surface area (PSA) was measured to determine the polar surface area and the non-polar surface area of the derivatives 22a, b and 23a, b. This study could be useful to help pharmaceutical researchers discover a new series of potent agents that may act as an antioxidant, anti-diabetic, anti-Alzheimer, and anti-arthritic.


Subject(s)
Antioxidants , Schiff Bases , Antioxidants/pharmacology , Antioxidants/chemistry , Schiff Bases/chemistry , Acetylcholinesterase/metabolism , Pyrazoles , alpha-Amylases , Molecular Structure , Molecular Docking Simulation
11.
Molecules ; 28(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37836657

ABSTRACT

Osteoarthritis is a substantial burden for patients with the disease. The known medications for the disease target the mitigation of the disease's symptoms. So, drug development for the management of osteoarthritis represents an important challenge in the medical field. This work is based on the development of a new benzofuran-pyrazole-pyridine-based compound 8 with potential anti-inflammatory and anti-osteoarthritis properties. Microanalytical and spectral data confirmed the chemical structure of compound 8. The biological assays indicated that compound 8 produces multifunctional activity as an anti-osteoarthritic candidate via inhibition of pro-inflammatory mediators, including RANTES, CRP, COMP, CK, and LPO in OA rats. Histopathological and pharmacokinetic studies confirmed the safety profile of the latter molecule. Accordingly, compound 8 is considered a promising anti-osteoarthritis agent and deserves deeper investigation in future trials.


Subject(s)
Benzofurans , Osteoarthritis , Humans , Rats , Animals , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Benzofurans/pharmacology , Benzofurans/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use
12.
Molecules ; 28(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37836701

ABSTRACT

This study systematically investigates the molecular structure and electronic properties of 2-methoxy-4,6-diphenylnicotinonitrile, employing X-ray diffraction (XRD) and sophisticated computational methodologies. XRD findings validate the compound's orthorhombic crystallization in the P21212 space group, composed of a pyridine core flanked by two phenyl rings. Utilizing the three-dimensional Hirshfeld surface, the research decodes the molecule's spatial attributes, further supported by exhaustive statistical assessments. Key interactions, such as π-π stacking and H⋯X contacts, are spotlighted, underscoring their role in the crystal's inherent stability and characteristics. Energy framework computations and density functional theory (DFT) analyses elucidate the prevailing forces in the crystal and reveal geometric optimization facets and molecular reactivity descriptors. Emphasis is given to the exploration of frontier molecular orbitals (FMOs), aromaticity, and π-π stacking capacities. The research culminates in distinguishing electron density distributions, aromatic nuances, and potential reactivity hotspots, providing a holistic view of the compound's structural and electronic landscape. Concurrently, molecular docking investigates its interaction with the lipoprotein-associated phospholipase A2 protein. Notably, the compound showcases significant interactions with the protein's active site. Molecular dynamics simulations reveal the compound's influence on protein stability and flexibility. Although the molecule exhibits strong inhibitory potential against Lp-PLA2, its drug development prospects face challenges related to solubility and interactions with drug transport proteins.

13.
Gels ; 9(10)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37888404

ABSTRACT

BACKGROUND: Dermatitis is skin disorder that is complicated by recurrent infections of skin by bacteria, viruses, and fungi. Spilanthol is an active constituent of Spilanthes acmella, which possess strong anti-bacterial properties. The purpose of this study was to develop a herbal emulgel for the treatment of dermal bacterial infections, as microscopic organisms have created solid resistance against anti-microbials. METHODS: Emulgels were prepared and characterized for parameters such as physical examination, rheological studies, spreading coefficient, bio-adhesive strength measurement, extrudability study, antibacterial activity, FTIR analysis, in vitro drug dissolution, and ex vivo permeation studies. RESULT: With a statistically significant p-value = 0.024, 100% antibacterial activity was observed by F4 against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli (mean ± S.D) (25.33 ± 0.28, 27.33 ± 0.5, and 27 ± 0.5). However, maximum antibacterial effect 100% formulations produced zones of inhibitions against E. colip-value = 0.001. The mean zone of inhibition produced by F4 was greatest among all at 26.44 ± 0.37 mm (mean ± S.D). The F4 formulation produced a maximum percentage dissolution, permeation, and flux of 86.35 ± 0.576, 55.29 ± 0.127%, and 0.5532 ug/cm2/min, respectively. CONCLUSIONS: The present study therefore, suggests the use of S. acmella extract and olive oil containing emulgel for treating bacterial skin infections.

14.
Molecules ; 28(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37446564

ABSTRACT

Flavonoids are secondary metabolites that are non-essential for plant growth or survival, and they also provide numerous health benefits to humans. They are antioxidants that shield plants from the ill effects of ultraviolet light, pests, and diseases. They are beneficial to health for several reasons, including lowering inflammation, boosting cardiovascular health, and lowering cancer risk. This study looked into the physicochemical features of these substances to determine the potential pharmacological pathways involved in their protective actions. Potential targets responsible for the protective effects of quercetin, naringenin, and rutin were identified with SwissADME. The associated biological processes and protein-protein networks were analyzed by using the GeneMANIA, Metascape, and STRING servers. All the flavonoids were predicted to be orally bioavailable, with more than 90% targets as enzymes, including kinases and lyases, and with common targets such as NOS2, CASP3, CASP9, CAT, BCL2, TNF, and HMOX1. TNF was shown to be a major target in over 250 interactions. To extract the "biological meanings" from the MCODE networks' constituent parts, a GO enrichment analysis was performed on each one. The most important transcription factors in gene regulation were RELA, NFKB1, PPARG, and SP1. Treatment with quercetin, naringenin, or rutin increased the expression and interaction of the microRNAs' hsa-miR-34a-5p, hsa-miR-30b-5p, hsa-let-7a-5p, and hsa-miR-26a-1-3p. The anticancer effects of hsa-miR-34a-5p have been experimentally confirmed. It also plays a critical role in controlling other cancer-related processes such as cell proliferation, apoptosis, EMT, and metastasis. This study's findings might lead to a deeper comprehension of the mechanisms responsible for flavonoids' protective effects and could present new avenues for exploration.


Subject(s)
MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Quercetin/pharmacology , Rutin/pharmacology , Gene Regulatory Networks , Neoplasms/drug therapy , Neoplasms/genetics , Gene Expression Profiling/methods
15.
Molecules ; 28(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298748

ABSTRACT

Cyclin-dependent kinases (CDKs) are promising targets in chemotherapy. In this study, we report a series of 2-anilinopyrimidine derivatives with CDK inhibitory activity. Twenty-one compounds were synthesized and their CDK inhibitory and cytotoxic activities were evaluated. The representative compounds demonstrate potent antiproliferative activities toward different solid cancer cell lines and provide a promising strategy for the treatment of malignant tumors. Compound 5f was the most potent CDK7 inhibitor (IC50 = 0.479 µM), compound 5d was the most potent CDK8 inhibitor (IC50 = 0.716 µM), and compound 5b was the most potent CDK9 inhibitor (IC50 = 0.059 µM). All the compounds satisfied the Lipinski's rule of five (molecular weight < 500 Da, number of hydrogen bond acceptors <10, and octanol-water partition coefficient and hydrogen bond donor values below 5). Compound 5j is a good candidate for lead optimization because it has a non-hydrogen atom (N) of 23, an acceptable ligand efficiency value of 0.38673, and an acceptable ligand lipophilic efficiency value of 5.5526. The synthesized anilinopyrimidine derivatives have potential as anticancer agents.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Molecular Structure , Structure-Activity Relationship , Ligands , Molecular Docking Simulation , Antineoplastic Agents/chemistry , Cyclin-Dependent Kinases , Cell Proliferation , Drug Screening Assays, Antitumor , Drug Design , Cell Line, Tumor
16.
Molecules ; 28(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37175381

ABSTRACT

Lung cancer is the main cause of cancer-related mortality globally. Erlotinib is a tyrosine kinase inhibitor, affecting both cancerous cell proliferation and survival. The emergence of oncological nanotechnology has provided a novel drug delivery system for erlotinib. The aims of this current investigation were to formulate two different polyamidoamine (PAMAM) dendrimer generations-generation 4 (G4) and generation 5 (G5) PAMAM dendrimer-to study the impact of two different PAMAM dendrimer formulations on entrapment by drug loading and encapsulation efficiency tests; to assess various characterizations, including particle size distribution, polydispersity index, and zeta potential; and to evaluate in vitro drug release along with assessing in situ human lung adenocarcinoma cell culture. The results showed that the average particle size of G4 and G5 nanocomposites were 200 nm and 224.8 nm, with polydispersity index values of 0.05 and 0.300, zeta potential values of 11.54 and 4.26 mV of G4 and G5 PAMAM dendrimer, respectively. Comparative in situ study showed that cationic G4 erlotinib-loaded dendrimer was more selective and had higher antiproliferation activity against A549 lung cells compared to neutral G5 erlotinib-loaded dendrimers and erlotinib alone. These conclusions highlight the potential effect of cationic G4 dendrimer as a targeting-sustained-release carrier for erlotinib.


Subject(s)
Dendrimers , Lung Neoplasms , Humans , Erlotinib Hydrochloride/pharmacology , Drug Delivery Systems/methods , Lung Neoplasms/drug therapy , Lung
17.
Molecules ; 28(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37175074

ABSTRACT

In this research study, the authors successfully synthesized potent new anticancer agents derived from indazol-pyrimidine. All the prepared compounds were tested for in vitro cell line inhibitory activity against three different cancerous cell lines. Results demonstrated that five of the novel compounds-4f, 4i, 4a, 4g, and 4d-possessed significant cytotoxic inhibitory activity against the MCF-7 cell line, with IC50 values of 1.629, 1.841, 2.958, 4.680, and 4.798 µM, respectively, compared to the reference drug with an IC50 value of 8.029 µM, thus demonstrating promising suppression power. Compounds 4i, 4g, 4e, 4d, and 4a showed effective cytotoxic activity stronger than the standard against Caco2 cells. Moreover, compounds 4a and 4i exhibited potent antiproliferative activity against the A549 cell line that was stronger than the reference drug. The most active products, 4f and 4i, werr e further examined for their mechanism of action. It turns out that they were capable of activating caspase-3/7 and, therefore, inducing apoptosis. However, produced a higher safety profile than the reference drug, towards the normal cells (MCF10a). Furthermore, the dynamic nature, binding interaction, and protein-ligand stability were explored through a Molecular Dynamics (MD) simulation study. Various analysis parameters (RMSD, RMSF, RoG, and SASA) from the MD simulation trajectory have suggested the stability of the compounds during the 20 ns MD simulation study. In silico ADMET results revealed that the synthesized compounds had low toxicity, good solubility, and an absorption profile since they met Lipinski's rule of five and Veber's rule. The present research highlights the potential of derivatives with indazole scaffolds bearing pyrimidine as a lead compound for designing anticancer agents.


Subject(s)
Antineoplastic Agents , Indazoles , Humans , Cell Line, Tumor , Indazoles/pharmacology , Caco-2 Cells , Antineoplastic Agents/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemistry , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Cell Proliferation , Molecular Structure , Molecular Docking Simulation , Dose-Response Relationship, Drug
18.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175658

ABSTRACT

Several kinds of anticancer drugs are presently commercially accessible, but low efficacy, solubility, and toxicity have reduced the overall therapeutic indices. Thus, the search for promising anticancer drugs continues. The interactions of numerous essential anticancer drugs with DNA are crucial to their biological functions. Here, the anticancer effects of N-ethyl toluene-4-sulphonamide (8a) and 2,5-Dichlorothiophene-3-sulphonamide (8b) on cell lines from breast and cervical cancer were investigated. The study also compared how these substances interacted with the hearing sperm DNA. The most promising anticancer drug was identified as 2,5-Dichlorothiophene-3-sulfonamide (8b), which showed GI50 of 7.2 ± 1.12 µM, 4.62 ± 0.13 µM and 7.13 ± 0.13 µM against HeLa, MDA-MB231 and MCF-7 cells, respectively. Moreover, it also exhibited significant electrostatic and non-electrostatic contributions to the binding free energy. The work utilized computational techniques, such as molecular docking and molecular dynamic (MD) simulations, to demonstrate the strong cytotoxicity of 2,5-Dichlorothiophene-3-sulfamide (8b) in comparison to standard Doxorubicin and cisplatin, respectively. Molecular docking experiments provided additional support for a role for the minor groove in the binding of the 2,5-Dichlorothiophene-3-sulfamide (8b)-DNA complex. The molecular docking studies and MD simulation showed that both compounds revealed comparable inhibitory potential against standard Doxorubicin and cisplatin. This study has the potential to lead to the discovery of new bioactive compounds for use in cancer treatment, including metallic and non-metallic derivatives of 2,5-Dichlorothiophene-3-sulfonamide (8b). It also emphasizes the worth of computational approaches in the development of new drugs and lays the groundwork for future research.


Subject(s)
Antineoplastic Agents , Cisplatin , Male , Humans , Cisplatin/pharmacology , Molecular Docking Simulation , Semen/metabolism , Antineoplastic Agents/chemistry , HeLa Cells , Doxorubicin/pharmacology , DNA/metabolism , Drug Development , Sulfonamides/pharmacology , Structure-Activity Relationship , Molecular Structure , Drug Screening Assays, Antitumor , Cell Proliferation , Cell Line, Tumor
19.
Article in English | MEDLINE | ID: mdl-37061271

ABSTRACT

Brimonidine is a highly selective 2-adrenoceptor agonist that lowers intraocular pressure (IOP) by decreasing aqueous humor production and increasing aqueous humor outflow via the uveoscleral route. Brimonidine is used to treat glaucoma and other eye conditions. Brimonidine is a topical medication that is used mainly to treat open-angle glaucoma and ocular hypertension in the eyelids. The purpose of this chapter is to provide a comprehensive discussion of Brimonidine's nomenclature, physiochemical properties, preparation methods, identification procedures, and numerous qualitative and quantitative analytical techniques, as well as its ADME profiles and pharmacological effects. In addition, the chapter contains numerous approaches for separating brimonidine from other medications in combination formulations utilizing chromatographic techniques and other spectroscopic approaches.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Humans , Brimonidine Tartrate/pharmacology , Brimonidine Tartrate/therapeutic use , Glaucoma, Open-Angle/drug therapy , Adrenergic alpha-Agonists/pharmacology , Adrenergic alpha-Agonists/therapeutic use , Quinoxalines/pharmacology , Quinoxalines/therapeutic use , Ophthalmic Solutions/therapeutic use , Glaucoma/drug therapy , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use
20.
Article in English | MEDLINE | ID: mdl-37061273

ABSTRACT

Lapatinib is an anticancer used for treatment of the patients with advanced metastatic breast cancer in conjunction with the chemotherapy drug capecitabine or with letrozole for the treatment of postmenopausal women with hormone receptor-positive metastatic breast cancer. This comprehensive profile of Lapatinib gives more detailed information about the description, formulae, Elemental Analysis, Uses and application. Furthermore, methods and schemes are outlined for the preparation of the drug substance. The physical properties of the medication include constant of ionization, solubility, X-ray powder diffraction pattern, differential scanning calorimetry, thermal conduct and spectroscopic studies are investigated. The methods employed in bulk medicines and/or in pharmaceutical formulations to analyze the drug substance include spectrophotometric, electrochemical and the chromatographic methods are indicated. Other studies on this drug substance include drug stability, pharmaceutical applications, mechanism of action, pharmacodynamics, and a dosing information are also reviewed.


Subject(s)
Breast Neoplasms , Humans , Female , Lapatinib/pharmacology , Lapatinib/therapeutic use , Drug Compounding , Drug Stability , Breast Neoplasms/drug therapy , Pharmaceutical Preparations
SELECTION OF CITATIONS
SEARCH DETAIL
...